IOI	OP Proposal Cover Sheet	944 - F	ull					
Mid-Norwegian Continental Margin Magmatism Received for: 2018-10-01								
Title	The Nature, Cause and Climate Implications of Excess Magmatism Breakup	m During the Northea	st Atlantic Continental					
Proponents	Ritske Huismans, Christian Berndt, Sverre Planke, Morgan Jones Gernigon, Joost Frieling, Trond Torsvik, Damon Teagle, David Jol Dougal Jerram, Reidun Myklebust, Mansour Abdelmalak, Lars Eix	lley, Asbjørn Breivik, I	Henrik Svensen,					
Keywords	Breakup, Magmatism, Paleogene, PETM	Area	Vøring and Møre margins					
Proponent Information								
Proponent	Ritske Huismans							
Affiliation	University of Bergen							
Country	Norway							

Permission is granted to post the coversheet/site table on www.iodp.org

Abstract

The NE Atlantic conjugate passive margins are characterized by extensive break-up related magmatic products including extrusive basalt lava flows and volcanogenic sediments, shallow intrusive complexes emplaced within marginal sedimentary basins, and deep magmatic underplating at the base of the crust. The volume of generated magma cannot be explained by passive decompression melting of sub-lithospheric mantle with a normal mantle temperature. Competing geodynamic endmember hypotheses exist for the formation of this excess magmatism: 1) elevated mantle potential temperatures associated with mantle plume processes, 2) enhanced material flux through the melt window during rifting caused by small-scale convection at the base of the lithosphere, and 3) mantle source heterogeneity which may contribute to anomalously high melt production during continental breakup. While we have unsurpassed constraints on crustal structure of the Norwegian-Jan Mayen-Greenland conjugate rifted margins, the relative importance of hypothesized mechanisms responsible for excess magmatic productivity remains unresolved. Voluminous magmatism also coincides with global greenhouse (hot) climate in the early Paleogene and, via various mechanisms (e.g. magmatic volatile release; sill-induced gas generation from organic rich sediments and released to the atmosphere via hydrothermal vents etc.), proposed as a driver of both short-term (Paleocene-Eocene Thermal Maximum) and long-term (early Eocene Climate Optimum) global warming. However, the timing of the magmatism is not sufficiently constrained to test the proposed mechanisms or to evaluate volcanic and gas fluxes. Improved constraints on melting conditions, timing of magmatism, magmatic fluxes in time and space, eruption environment, sedimentary proxy data, and relative timing of climate events are required to resolve these linked controversies. Systematic IODP drilling is the only way to provide these constraints and the proposed drilling effort will provide a quantitatively testable framework for volcanic rifted margin formation and consequences for global climate. New 3D seismic data collected by the hydrocarbon industry during the past decade have provided unique insights into the nature and distribution of both the volcanic and sub-basalt sequences along the margin, enabling the identification of optimal drill sites. To meet our objectives, volcanic and sedimentary sequences are targeted in a series of boreholes along and across the Mid-Norwegian margin. The targeted material is essential in achieving our primary goals: testing the end-member models for the formation of excess magmatism during continental breakup and testing the influence of tectonic and magmatic events on Paleogene global climate.

944 - Full

Scientific Objectives

The primary objectives of drilling the Vøring and Møre volcanic margins sections are:

• To determine the conditions of mantle melting (e.g. mantle sources, temperature, pressure, degree of melting).

To determine spatial and temporal variations in along axis volcanic fluxes in order to test predictions made by fundamentally different geodynamic models for volcanic rifted margin formation including segmentation.
To determine variations in the depositional environment (sub-aerial vs sub-marine) of inner and outer lava flows (e.g. seaward dipping

reflectors) in order to test correlations between magma genesis and dynamic thermal support during late syn-rift, break-up, and early postrift oceanic spreading.

• To assess the temporal evolution of the styles of volcanic and magmatic activity in relation to paleoclimate proxies to test the relationship between large-scale volcanism and climate change events.

• To investigate the relative importance environmental consequences of two key processes during the initial opening of the North Atlantic: Direct volcanic degassing and explosive thermogenic release through hydrothermal vent complexes from contact metamorphism.

The proposal will also address two important secondary objectives mainly resulting from recovered sedimentary archives:

· Early Eocene hot-house and fresh water incursions into the Atlantic

Carbon capture and storage in basalt provinces

Non-standard measurements technology needed to achieve the proposed scientific objectives

None

Proposed Sites	(Total propose	d sites: 11: pri	: 9; alt: 2; N/S: 0)
T Toposeu Siles	(Total propose	u sites. 11, pri	2, 2, and 2, 10, 5, 0

Site Name	Position (Lat, Lon)	Water Depth (m)	Penetration (m)		(m)	Drief Site anacific Objectives
			Sed	Bsm	Total	Brief Site-specific Objectives
VMVM-01A (Primary)	64.9649 02.7859	1988	200	0	200	The main site objective is to sample sub-basalt sediments of unknown age on the Kolga High to characterize pre-eruption environment.
VMVM-02A (Primary)	64.9719 02.7898	1990	40	160	200	The main target of this site is emerget basalts, intra-basalt sediments, and the base-basalt contact for geochemical, volcanological, and geochronological studies.
VMVM-03A (Primary)	65.3664 03.0555	1707	200	0	200	The primary objective of the site is to drill Paleocene-Eocene sediments for lithological, geochemical and geochronolgical characterization.
VMVM-04A (Primary)	65.3590 03.0512	1703	200	0	200	The primary objective for this site is to drill the central part of a hydrothermal vent complex, including the base of the eye structure, to determine the lithology, age, and nature of the vent complexes.
VMVM-05A (Primary)	65.8296 01.9784	2245	200	0	200	The primary objective is to drill four offset holes of 200 m each to obtain an extended sedimentary sequence across the Paleocene-Eocene boundary for paleoclimate studies.
VMVM-06A (Primary)	67.2822 03.7729	1212	90	110	200	The primary objective is to sample basalt flows of the subaerial and faulted Landward Flow unit (Sequence 2) to obtain volcanic facies, geochemistry, and geochronology.
VMVM-07A (Primary)	67.3310 03.6215	1206	220	80	300	The primary objective of the site is to sample basalt flows in the uppermost part of the SDR (Sequence 1) with a pitted surface (likely sub-acqueous), and if possible, reach the Sequence 1 - Sequence 2 boundary, for facies, geochemistry, and geochronology.
VMVM-08A (Primary)	68.6122 04.6204	2857	50	0	50	The primary objective is to sample volcaniclastic sediments and possibly basalt of the Outer High, to determine volcanic facies and age.
VMVM-09A (Primary)	68.7605 05.7971	3156	450	100	550	The primary objective is to sample basalt in old oceanic crust associated with the Outer SDR for volcanic facies, geochemistry and geochronology
VMVM-10A (Alternate)	68.8417 04.1092	3238	650	100	750	Alternate site (for VMVM-09A). The key objective of the site is to sample old basalt associated with inital age oceanic crust.
VMVM-11A (Alternate)	65.3897 03.0874	1677	200	0	200	Alternate site (for VMVM-03A). The primary objective is to obtain sediment cores across the Paleocene-Eocene boundary, including possible vent ejecta deposts from nearby hydrothermal vent complexes.